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The problem of optical field chaos in a storage ring free-electron laser oscillator has been discussed by
using a phenomenological model. The result of theoretical analysis and numerical simulation shows that
the variation of laser intensity versus time can be both periodic and chaotic when there is a weak gain
modulation in the optical cavity. As time increases, the leading Lyapunov characteristic exponent of the
system goes to a negative and a positive real number, respectively. Further research is carried out, and a
chaotic transition via period-doubling bifurcation has been found when there are variations in the modu-
lation parameters. The behavior of the system with two different kinds of gain modulation is also dis-

cussed.

PACS number(s): 41.60.Cr, 52.35.Mw, 52.75.Ms, 05.45.+b

I. INTRODUCTION

Free-electron laser (FEL) physics has become an active
area of research since the first FEL was operated at Stan-
ford in 1976 [1]. As a result of the interaction between
the relativistic electron beam and the electromagnetic
fields, FEL comes to be a highly nonlinear system in
which instabilities and chaos can easily be found. In re-
cent years, along with the nonlinear study of the FEL,
papers on the chaotic phenomena of the FELs have been
accumulated [2—-8]. In 1988, Riyopoulos and Tang stud-
ied the chaotic motion of electrons in a combined field of
the wiggler magnetic field, the fundamental mode, and
the sidebands [2]. Two years later, Chen and Davidson
found that the trajectory of an electron in a helical
wiggler with an axial guide field could also be chaotic
when the electrostatic and magnetic self-fields of the elec-
tron beam could not be neglected [3]. At the same year,
Spindler and Renz gave a detailed description of the
chaotic behavior of electrons in a realizable wiggler field
[4]. Even in a linearly polarized wiggler with an axial
guide field, electrons can also move along chaotic orbits
[5]. From these results we can see that the chaotic
motion of the electrons in FELs is universal. However
the optical field chaos, which may cause a broadening of
the laser spectrum, has rarely been considered [6-8].

Theoretical study of the optical field chaos in a storage
ring free-electron laser oscillator (SRFEL) was first car-
ried out by Billardon in 1990 [7]. In the early 1980s, it
was commonly believed that the FEL output laser light
should have a continuous temporal structure. While the
experiment made on the accelerator at Orsay (known as
the ACO SRFEL) shows that the laser naturally adopts a
pulsed structure, rather than a continuous one [9,10]. By
using a phenomenological model with a weak periodic
gain modulation, Billardon found that the laser could be
either periodic or chaotic, and it was in good agreement
with the experimental results [7,8].

In this present paper we will first simplify the equa-
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tions given by Billardon, and then discuss the behavior of
the simplified equations in detail. From the results of the
numerical simulation one can see clearly that the optical
field of the SRFEL can be either periodic or chaotic.
This explains why the laser naturally has a pulsed tem-
poral structure. We can also confirm the existence of the
optical field chaos by calculating the Lyapunov charac-
teristic exponents. Finally, the behavior of the system
with two different kinds of gain modulation is also dis-
cussed.

II. PHENOMENOLOGICAL MODEL

The following model of a SRFEL system is considered:

ar _,e—p

it I 5 (1)
de? 2 5

dt - (0°—og)tal , (2)
g=g0exp[—k(02—a(2))][1+F(t)] , 3)

where the first equation describes the amplification of the
laser intensity I. The parameters g, p, and 6 stand for the
unsaturated gain, cavity losses, and the electron revolu-
tion period (which equals to the round-trip transit time of
the light pulse stored inside the optical cavity), respec-
tively. The second equation describes the evolution of
the electron energy spread o =AE/E, where E, is the
average energy of electrons and AE is the rms deviation.
0y is the equilibrium value of the energy spread without
FEL operation. 7, /2 is the characteristic damping time
of 02— o} evolving without FEL operation, and it is usu-
ally of hundreds of milliseconds long. The term al,
where a >0, represents an energy spread caused by the
interaction between the optical field and the electron
bunch. The third equation describes the evolution of the
optical gain in the cavity, and F(¢) represents the modu-
lation of the gain. As pointed out by Elleaume in Ref.
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[9], the gain of a SRFEL can be modulated by several
means: (a) Misalignment of the electron beam with the
optical cavity axis may cause a transverse translation of
the electron beam, and this results in a modulation of the
gain. For ACO SRFEL, a 0.5 mm displacement is
sufficient to decrease the gain by a factor of 4. (b) Alter-
ing the storage ring revolution frequency of the ACO
SRFEL can shift the synchronism of the electron and the
optical pulses in the cavity, and cause a modulation of
the gain. From the ACO SRFEL experiment, 100 Hz of
frequency changing is enough to stop the laser. (c)
Modulation of the cavity length via a piezoelectric trans-
ducer can also cause a modulation of the gain. A 50 um
displacement can stop the laser. The first two methods
have already been used on ACO SRFEL to get a stable
periodic laser operation.

The model described by Egs. (1)-(3) are simply phe-
nomenological. They are similar to the rate equations of
lasers utilizing stimulated emission between two different
states of an atom or a molecular. For both g and «a are
functions of o2 and ¢, the system described by Egs. (1)—(3)
is a nonautonomous and nonlinear one. Thus solutions
for this system can be either periodic or chaotic. In order
to simplify Egs. (1)-(3), we first assume g,, p and 8 are
constants, and then set =0 —0% Now we can expand
g and a near to the equilibrium point (I,2)=(I,,Z,),
where dI/dt| s,=0, and dZ/dt|; 5 ,=0, of Egs.

(1)-(3) when F(z)=0. Keeping just the linear term of the
Taylor expansion we get

g(2,)=p[1—k(
a(2)=

a(Z) . (5)

Substituting Egs. (4) and (5) into Egs. (1)
obtain a simplified form of Egs. (1)-(3):

—(3), we finally

df _ 1.+,

i Mm-s+0+-2)F1)], (6)

d$ _ 2 5_

Fria s, @)
where 7,=0/(gy—p), B=1/kZq, I=7,a(3x)I /2%, and
$=3/3,.

III. cw LASER OPERATION OF SRFEL

If the modulating term F(t) is omitted, a cw laser
operation is achieved. Now Egs. (6) and (7) are reduced
to a two-dimensional autonomous system:

dal 14

dt—Tom S, ®)
ds

o —T T-%). 9

Equations (8) and (9) are the same as the correspondent
equations in Ref. [9]. There are two fixed points of Egs.
(8) and (9) in the phase space (I,2). They are (0,0) and
(1,1). In the vicinity of point (0,0), the Jacobian matrix J
of the linearized equations of (8) and (9) has two opposite-

ly signed eigenvalues 1/7; and —2/7;. Therefore (0,0) is
a saddle point. While in the vicinity of point (1,1), the
two eigenvalues of J are complex conjugates with nega-
tive real part (r,>>7y):—[1%i(27,/7o—1)'"%]/7,, so
(1,1) is a stable focus.

Eliminating the variable $ from Egs. (8) and (9), we
can get a second-order ordinary differential equation of I
Setting x —TolnI we have

dx_+_2dx+ x/my

E{ 7 Ts( —1)=0 (10)

This is an equation of a damped nonlinear oscillator. For
(1,1) is a stable focus, it is very clear that the behavior of
the solution to Eq. (10) near point (1,1) is the same as a
damped linear oscillator. An approximate solution to
Egs. (8) and (9) near (1,1) can be obtained analytically, by
expanding T and £ around point (1,1):

T=1+86T, (11)
$=1+8%. (12)
Substituting Egs. (11) and (12) into Egs. (8) and (9) yields

pes -
dol 2.4 2 45, (13)
dt? T, dt ToTs

This is an equation of a damped linear oscillator. Its
solution can be easily written down:

sT=6T,e " " "cos[Qp(t —to)] , (14)
where Qg =(2 /797, —1/7%)!/? is the circular frequency.

Numerical simulating results are in good agreement
with the theoretical results. In Fig. 1, the phase space
trajectory of Egs. (8) and (9) is shown. The initial point
of this trajectory is (7,£)=(1075,0), and the parameters
in Egs. (8) and (9) are taken as 7o=35 ms and 7, =200 ms.
Further investigation shows that whenever g and a are
independent of ¢, Egs. (6) and (7) will be autonomous,
and we will have a cw laser operation.
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FIG. 1. Phase space diagram of a cw laser operation of
SRFEL. F(¢)=0. Parameters are taken as 7,=35 ms, 7, =200
ms.
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" FIG. 2. Phase space diagrams of a pulsed laser operation of SRFEL. F(t)= 4,,sin(Qt), 7,=5 ms, 7,=200 ms, B=135.63. (A)
Q=0,. (@) A4, =0.00400, (b) A, =0.00500, (c) A, =0.00510, (d) A, =0.00514, (¢) A, =0.00516. (B) A,,=0.00550. (a)
Q=0.500Q%, (b) =0.570Q%, (c) 2=0.600Q%, (d) 2=0.615Q4, () 2=0.640Q%.
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FIG. 3 (a) Lyapunov characteristic exponents A, and A, versus 4,,. Q=Q. (b) A; and A, versus Q/Qp. 4,,=0.00550. Parame-

ters 7o, 7, and B are the same as those in Fig. 2.

IV. PULSED LASER OPERATION OF SRFEL
WITH F(t)= A,,sin(Qt)

If the modulating term F(t) is considered, Egs. (6) and
(7) will be nonautonomous. In this section we will study
a SRFEL with a weak periodic gain modulation

F(t)= A, sin(Q1) . (15)

When A4,, is small enough, expansion Egs. (11) and (12)
are still valid. Substituting Egs. (11) and (12) into Egs.
(6) and (7) yields

2 A
d’83 | 2.d83 | 2 oo A 0. (6
dt? T, dt ToTs ToTs

This is an equation of a forced linear oscillator, where a
damping term is included. Its solution is
8§=6§0e_(t_t°)ﬁscos[QR(t —ty)]
BA,,
+
ol (1/79— 1,02 /2)2+Q?]'/?

sin(Qt—¢g) , (17)

where p=tan"![Q /(1 /77— 7,Q02/2)]. When Q=(2 /7,7,
—2/7)"/2=Qp, the second term on the right-hand side
of Eq. (17) comes to its maximum value BA4,, /7;Qg.
This is the usual resonance. From Eq. (17) we can see
that the laser becomes a pulsed one when ¢ is big.

When A4,, is not very small, expansion Egs. (11) and
(12) cannot be used. In fact, Egs. (6) and (7) are similar to
the equations of the forced Brusselator [11]. Integrating
Egs. (6) and (7) numerically along line Q=Q4 and line
A,, =0.005 50 in the parameter space ({2, 4,,), we found
there is a chaotic transition via period-doubling bifurca-
tion when A4,, or Q changes, respectively. Phase space
diagrams of solutions to Egs. (6) and (7) of different
periods are shown in Fig. 2.

In order to confirm the existence of the optical field
chaos, the Lyapunov characteristic exponents are calcu-
lated [12,13]. For a periodic orbit in the phase space, the
two Lyapunov characteristic exponents A; and A, (where
A, > A,) should be all negative. While for a chaotic orbit,
one of them A, will be positive. Figure 3 shows the varia-
tion of A; and A, versus 4,, and Q. It is very clear that
for some values of 4,, and Q, A, is positive. This indi-
cates the existence of the optical field chaos.

Further numerical study is carried out. In the parame-
ter space (Q, 4,,), we can see a more complicated struc-
ture of bifurcation and chaos, as shown in Fig. 4. This
result explains the complex behavior of the output laser
observed in the ACO SRFEL experiment.

10° 4,

0. 0 T T o P e et o7 ]
0. 00 0. 50 1.00 1.5 2.00

Q/Qr

FIG. 4. Structure of bifurcation and chaos in the parameter
space ({2, 4,,). Parameters 7y, 7, and 3 are the same as those in
Fig. 2. Symbols “—7, “#7, “y”, “0” “+7 «“X” and “|”
represent period 1, 2, 4, 8, 3, 6, and chaotic orbit, respectively.
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FIG. 5. Phase space diagrams of a pulsed laser operation of SRFEL. F(t)= A4, 3 °_,8(t —n7). 70=5 ms, 7,=200 ms, f=135.63.
(A) 7=50.00 ms. (a) 4,, =0.1000, (b) 4,,=0.1600, (c) 4,,=0.1720, (d) 4,,=0.1760, (e) 4,,=0.1782. (B) 4,,=0.1783. (a) 7=40.00
ms, (b) 7=46.00 ms, (c) 7=49.40 ms, (4) 7=49.80 ms, (e¢) 7=750.00 ms.
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ters 7y, 7, and [ are the same as those in Fig. 5.

V. PULSED LASER OPERATION OF SRFEL
WITH F(t)= A4, 37-,8(t —n7)

In this section we will study a SRFEL with a pulsed
periodic gain modulation

F(h=A4, S 8(t—n1), (18)

n=1

where 7 is the interval of the modulating pulses. If the
gain modulation in the optical cavity is not a continuous
sine wave one, but a pulsed one described by Eq. (18), we
can still solve Egs. (6) and (7) numerically. Before doing
this, we first simplify Eqgs. (6) and (7) by utilizing the fol-
lowing transformation:

x=InT, (19

y=1-%5. (20)
Now Egs. (6) and (7) can be rewritten as

dx _ 1

at o y +(B+y)F@)], @1

dy_ 2 x_

dt (y +e*—1). (22)

s

As in Sec. IV, we still integrate Egs. (21) and (22) along
line 7=50.00 ms and line 4,, =0.1783 in the parameter
space (7, 4,,). Numerical simulating results shows that
there is again a chaotic transition via period-doubling bi-
furcation when the correspondent 4,, or 7 changes. The
phase space diagrams of different periods and chaos along
line 7=50.00 ms and line A4,, =0.1783 are displayed in
Fig. 5. As a second step, we carried out the calculation
of the Lyapunov characteristic exponents A; and A, for
different parameters 7 and A4,,. Figure 6 shows A, and A,
versus 7 and 4,,. From the emergence of positive A, we
can confirm the existence of the optical field chaos. The
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structure of bifurcation and chaos in the parameter space
(1, 4,,) is also very complicated. This can be easily seen
from Fig. 7.

VI. COMPARISON OF EXPERIMENTAL FACTS
AND NUMERICAL SIMULATION RESULTS

As we have pointed out above, the ACO SRFEL exper-
iment shows that when there is a gain modulation in the
optical cavity, the output laser temporal structure can be
either periodic or chaotic, as shown in Fig. 8(A). The
different temporal structure of the output laser pulses are
determined by the amount of the modulating parameters.
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FIG. 7. Structure of bifurcation and chaos in the parameter
space (7, 4,,). Parameters 7y, 7, and B are the same as those in
Flg 5 Symbols “__”, “#”’ “* ”, (LY ”’ “+”, c X ”’ and “ln
represent period 1, 2, 4, 8, 3, 6, and chaotic orbit, respectively.



Using the present phenomenological model, we can get a
solution of laser 1ntens1ty T as a function of time . When
the modulating term is taken as F(f)= 4,,sin(Q¢), the
solutions of T(¢) will be determined by the values of 4,
and Q. Periodic and chaotic solutions have been ob—
tained, as shown in Fig. 8(B). When
F(t)=A,37-18(t —nT), we have also gotten a similar
solution of I(¢), which is shown in Fig. 8(C). From these
results we can see that a phenomenological SRFEL mod-
el with a gain modulation can really have a pulsed solu-
tion of the laser intensity T of different periods. This is in
good agreement with the experimental results. We have
also found that the shape of the laser pulses obtained here
is a little different when F(¢) is of different forms. Ac-
cording to Fig. 8 we can say roughly that a pulsed gain
modulation described by Eq. (18) conforms better to ex-
perimental facts than a sine wave one given by Eq. (15)
does.

30. 00,
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VII. CONCLUSIONS

As a summary, we would like to review the principal
points of this paper. By using a phenomenological mod-
el, the problem of optical field chaos in a SRFEL has
been discussed. Adopting a Taylor expansion, we first
simplified the original equations of the laser intensity I
and the electron energy spread o. This makes it simple
to analyze the behavior of the system. Theoretical study
and numerical simulation have been carried out, and
chaotic transitions via period-doubling bifurcation have
been found when there is a gain modulation in the optical
cavity. The appearance of the optical field chaos has been
confirmed by calculating the Lyapunov characteristic ex-
ponents of the system. Numerical results also indicate
that the existence of a gain modulation leads to a pulsed
laser operation. For both a continuous sine wave gain
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FIG. 8. Comparison of the experimental results and the numerical simulating results (A) output laser temporal structure ob-
served in the ACO SRFEL experiment [7]. (B) Numerical results of the laser intensity I versus time ¢ when the gain modulation is
F(t)= A,,sin(Q¢). (C) Numerical results of the laser intensity T versus time ¢ when the gain modulation is F(¢)= 4, S8t —nT).
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modulation term and a pulsed one, the system expresses
similar features. Further study shows that the structure
of bifurcation and chaos in the parameter space is very
complicated. This explains why the output laser of the
ACO SRFEL experiment is usually of a complex pulsed
feature, not a continuous wave one. Comparing with the
experimental facts, we can say roughly that the gain

modulation in the optical cavity seems to be a pulsed one,
rather than a sine one.
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